Eye Disease Detection Using Deep Learning Models with Transfer Learning Techniques

Author:

R.M. Bhavadharini,Vardhan Kalla Bharath,Nidhish Mandava,Kiran C. Surya,Nahid Shameem Dudekula,Sai Charan Varanasi

Abstract

INTRODUCTION: Diabetic Retinopathy, Cataract and Glaucoma are the major eye diseases posing significant diagnostic challenges due to their asymptotic nature at their early stages. These diseases if not detected and diagnosed at their early stages may lead to severe visual impairment and even can cause blindness in human beings. Early detection of eye diseases showed an exceptional recovery rate. Traditional diagnostic methods primarily relying on expertise in the field of ophthalmology involve a time-consuming process. With technological advancements in the field of imaging techniques, a large volume of medical images have been created which can be utilized for developing more accurate diagnostic tools in the field. Deep learning (DL) models are playing a significant role in analyzing medical images. DL algorithms can automatically learn the features which indicate eye diseases from eye image datasets. Training DL models, however, requires a significant amount of data and computational resources. To overcome this, we use advanced deep learning algorithms combined with transfer-learning techniques. Leveraging the power of deep learning, we aim to develop sophisticated models that can distinguish different eye diseases in medical image data. OBJECTIVES: To improve the accuracy and efficiency of early detection methods, improve diagnostic precision, and intervene in these challenging ocular conditions in a timely manner. METHODS: The well-known Deep Learning architectures VGG19, InceptionV3 and ResNet50 architectures with transfer learning were evaluated and the results are compared. RESULTS: VGG19, InceptionV3 and ResNet50 architectures with transfer learning achieved 90.33%, 89.8% and 99.94% accuracies, respectively. The precision, recall, and F1 scores for VGG19 were recorded as 79.17%, 79.17%, and 78.21%, while InceptionV3 showed 82.56%, 82.38%, and 82.11% and ResNet50 has 96.28%, 96.2%, and 96.24%. CONCLUSION: The Convolutional Neural Network models VGG19, Inception v3, ResNet50 combined with transfer learning achieve better results than the original Convolutional Neural Network models.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3