PREDICTION OF EPILEPSY BASED ON EEMD AND LSSVM DOUBLE CLASSIFICATION

Author:

Zhang Xia1ORCID,Yan Caini2

Affiliation:

1. College of Intelligent Manufacturing, Longdong University, Qingyang City, Gansu Province 745000, P. R. China

2. School of Literature and History Longdong University, Qingyang City, Gansu Province 745000, P. R. China

Abstract

Epilepsy seizures are caused by abnormal, excessive, or synchronized neuronal activity in the brain, which is difficult to treat and is extremely stubborn. Therefore, studying the activity of epilepsy can greatly contribute to its diagnosis and treatment. The original signal is decomposed into IMFs and residual by ensemble empirical mode decomposition (EEMD), and then the first three intrinsic mode functions (IMF) are selected to replace the original signal, and the nonlinear and non-stationary problems of the original signal are solved. The Least Squares Support Vector Machine (LSSVM) was used as the classifier, its parameters (gam and sig2) are optimized by Particle Swarm Optimization (PSO). The experiment used the EEG database published by the University of Bonn (UoB) to realize the classification of normal, interictal and ictal periods. When PSO was employed, the recognition accuracy of the test set was 93.33%, with a classification time of 0.035 s and the Information Transfer Rate (ITR) of 3.77 bpm in training 70 classes with 100 samples each. In contrast, without PSO, the recognition accuracy of the test set was 92%, with a classification time of 0.039 s and the ITR of 2.88 bpm without PSO in training 70 classes with 100 samples each. The experimental results show that EEMD and LSSVM can effectively implement the three-classification problem and provide an effective means for the onset prediction of epilepsy patients.

Funder

Science and Technology Program for Gansu Province

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EpiNET: AN OPTIMIZED, RESOURCE EFFICIENT DEEP GRU-LSTM NETWORK FOR EPILEPTIC SEIZURE PREDICTION;Biomedical Engineering: Applications, Basis and Communications;2024-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3