Parkinson’s Disease Detection from Resting-State EEG Signals Using Common Spatial Pattern, Entropy, and Machine Learning Techniques

Author:

Aljalal MajidORCID,Aldosari Saeed A.,AlSharabi KhalilORCID,Abdurraqeeb Akram M.,Alturki Fahd A.

Abstract

Parkinson’s disease (PD) is a very common brain abnormality that affects people all over the world. Early detection of such abnormality is critical in clinical diagnosis in order to prevent disease progression. Electroencephalography (EEG) is one of the most important PD diagnostic tools since this disease is linked to the brain. In this study, novel efficient common spatial pattern-based approaches for detecting Parkinson’s disease in two cases, off–medication and on–medication, are proposed. First, the EEG signals are preprocessed to remove major artifacts before spatial filtering using a common spatial pattern. Several features are extracted from spatially filtered signals using different metrics, namely, variance, band power, energy, and several types of entropy. Machine learning techniques, namely, random forest, linear/quadratic discriminant analysis, support vector machine, and k-nearest neighbor, are investigated to classify the extracted features. The impacts of frequency bands, segment length, and reduction number on the results are also investigated in this work. The proposed methods are tested using two EEG datasets: the SanDiego dataset (31 participants, 93 min) and the UNM dataset (54 participants, 54 min). The results show that the proposed methods, particularly the combination of common spatial patterns and log energy entropy, provide competitive results when compared to methods in the literature. The achieved results in terms of classification accuracy, sensitivity, and specificity in the case of off-medication PD detection are around 99%. In the case of on-medication PD, the results range from 95% to 98%. The results also reveal that features extracted from the alpha and beta bands have the highest classification accuracy.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3