EVALUATION OF CHITOSAN/CaSO4/PLATELET-RICH PLASMA MICROSPHERE COMPOSITES AS ALVEOLUS OSTEOGENESIS MATERIAL

Author:

Chang Shwu Jen1,Kuo Shyh Ming1,Lan Cheng-Wen1,Manousakas Ioannis1,Tsai Pei Hua1

Affiliation:

1. Department of Biomedical Engineering, I-SHOU University, Kaohsiung County, Taiwan

Abstract

Periodontal disease is the manifestation of serious bacteria infection that may extend to the gingival, periodontal ligaments, and alveolus bone. One commonly administrated treatment is the debridement therapy with the removal of infected area including the soft and hard lesion tissues. In some critical case, osteogenetic materials are being filled into the defective voids to improve the regeneration of slow-growing bony tissues. In attempt to improve bone regeneration, chitosan microsphere composites embedded with two osteogenesis beneficial ingredients, CaSO 4 and platelet-rich plasma (PRP), were fabricated by using a high voltage electrostatic field system. Three groups, chitosan/ CaSO 4 microspheres (Group A), chitosan/ CaSO 4 microspheres mixed with thrombin (Group B), and chitosan/ CaSO 4/PRP microspheres mixed with thrombin (Group C) were prepared. And, these chitosan-based composites were evaluated together with a control group in pig oral model for the bone regeneration study. The chitosan/ CaSO 4/PRP microsphere composites, exhibiting good sphericity, were in the range of 457.5 ± 59.3 μ m in diameter. Defects filled with Group B and Group C showed increases in new bone formation along with fibrous tissue regeneration as compared to that filled with Group A. The Masson's Trichrome stain observations suggested more abundant presence of fibrous collagen matrices around the defects after implanted with Group B over that of Group C microsphere composites. The preparation of chitosan/ CaSO 4-based microspheres was straight forward by using high voltage electrostatic field system. Furthermore, Chitosan/ CaSO 4-based microspheres with thrombin could be used successfully in regenerating new bone around the alveolus bone area.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3