A CHAOTIC MULTILAYER LIF SCHEME TO MODEL THE PRIMARY VISUAL CORTEX

Author:

Abolpour Nahid1,Boostani Reza1ORCID,Masnadi-Shirazi Mohammad-Ali2,Tahayori Bahman3,Almasi Ali4

Affiliation:

1. Biomedical Group, CSE & IT Department, ECE Faculty, Shiraz University, Shiraz, Iran

2. School of Electrical & Computer Engineering, Shiraz University, Shiraz, Iran

3. IBM Research, Melbourne, Australia

4. National Vision Research Institute, Melbourne, Australia

Abstract

Precise mathematical modeling of the primary visual cortex (V1) is still a challenging problem. Due to the high similarity of visual system of cat and human, in this paper, we present a hybrid model to track the electrical responses of neurons that are measured by a multi-electrode array implanted in cat V1. The proposed model combines a stochastic phenomenological model with a multilayer leaky integrate-and-fire (LIF) model to predict V1 responses. Since all the existing visual cortex models do not capture the stochastic properties of synaptic changes, the proposed phenomenological model provides input currents for V1 by utilizing continuous chaotic neural equations with a quantization rule. Then a multilayer LIF model is presented to mimic the functions of lateral geniculate nucleus (LGN) and V1 neurons by their corresponding differential equations. The input current in these models is from the presynaptic neurons, which are computed using the LIF model. The LGN-V1 neuronal connections are adopted from previous studies, where the receptive fields (RFs) of LGN neurons converge onto elongated spatial structures that denote RFs of V1 neurons. The main purpose of this paper is to develop a short-term plasticity model that is more consistent with the nature of the LGN and V1 responses compared to state-of-the-art models. Previous studies have not incorporated the stochastic and quantized behaviors of neurons that in the recorded data of implemented electrodes. The experimental results show the ability of the proposed model to accurately predict spikes recorded experimentally, indicating the model outperforms the state-of-the-art method.

Funder

National Drought Research Institute, Shiraz University

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kernel Probabilistic Dependent-Independent Canonical Correlation Analysis;International Journal of Intelligent Systems;2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3