Kernel Probabilistic Dependent-Independent Canonical Correlation Analysis

Author:

Rohani Sarvestani Reza1ORCID,Gholami Ali2ORCID,Boostani Reza3ORCID

Affiliation:

1. Department of Computer Engineering, Shahrekord University, Shahrekord, Iran

2. Department of Electrical Engineering, Faculty of Technology and Engineering, Tehran Branch, Islamic Azad University, Tehran, Iran

3. CSE and IT Department, ECE Faculty, Shiraz University, Shiraz, Iran

Abstract

There is growing interest in developing linear/nonlinear feature fusion methods that fuse the elicited features from two different sources of information for achieving a higher recognition rate. In this regard, canonical correlation analysis (CCA), cross-modal factor analysis, and probabilistic CCA (PCCA) have been introduced to better deal with data variability and uncertainty. In our previous research, we formerly developed the kernel version of PCCA (KPCCA) to capture both nonlinear and probabilistic relation between the features of two different source signals. However, KPCCA is only able to estimate latent variables, which are statistically correlated between the features of two independent modalities. To overcome this drawback, we propose a kernel version of the probabilistic dependent-independent CCA (PDICCA) method to capture the nonlinear relation between both dependent and independent latent variables. We have compared the proposed method to PDICCA, CCA, KCCA, cross-modal factor analysis (CFA), and kernel CFA methods over the eNTERFACE and RML datasets for audio-visual emotion recognition and the M2VTS dataset for audio-visual speech recognition. Empirical results on the three datasets indicate the superiority of both the PDICCA and Kernel PDICCA methods to their counterparts.

Publisher

Hindawi Limited

Reference44 articles.

1. A CHAOTIC MULTILAYER LIF SCHEME TO MODEL THE PRIMARY VISUAL CORTEX

2. Medical image fusion: A survey of the state of the art

3. Multimodal prediction of affective dimensions and depression in human-computer interactions;R. Gupta

4. Survey on AI-based multimodal methods for emotion detection;C. Marechal;High-performance modelling and simulation for big data applications,2019

5. Multimodal speech recognition: increasing accuracy using high speed video data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3