DESIGN OF PATIENT SPECIFIC HIP PROSTHESIS BASED ON FINITE ELEMENT ANALYSIS: A COMPARATIVE STUDY

Author:

Snekhalatha U.12ORCID,Dhason Raja3,Rajalakshmi T.4

Affiliation:

1. Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India

2. College of Engineering and Fine Arts, Batangas State University, Philippines

3. Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India

4. Department of Electronics and Communication Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India

Abstract

This study aims to develop a patient-specific hip implant for osteoarthritis conditions and to compare with intact and conventional implant. The femoral bone with head and shaft region was segmented from the pelvic griddle and converted into 3D model. The parameters such as femoral ball diameter, shaft length, acetabular cup diameter, and neck angle were measured from the segmented 3D model. In this study, designed part of hip implant was assembled together to form a customized hip implant. The von Mises stress was measured by means of Finite element analysis (FEA) method by applying various forces applied at the distal end of hip implant. The forces applied at hip implant were based on the assumption of 500 N force for standing, 2000 N force for walking, and 3000 N force for jogging condition. The minimum stress attained at the femur bone of custom-model is 1.32 MPa for 500 N loading condition, 5.3 MPa for 2000 N and 7.96 MPa for the maximum load of 3000 N. Thus the customized model experienced better stress distribution compared to conventional model under the maximum load of 3000 N. In pelvic region, the custom model attained a lower stress of 23% compared to conventional model. Thus, the study recommends the customized hip implants for the osteoarthritis conditions to avoid revision surgery.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method of computational design for additive manufacturing of hip endoprosthesis based on basic‐cell concept;International Journal for Numerical Methods in Biomedical Engineering;2024-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3