CLASSIFICATION OF NORMAL AND KNEE JOINT DISORDER VIBROARTHROGRAPHIC SIGNALS USING MULTIFRACTALS AND SUPPORT VECTOR MACHINES

Author:

Jac Fredo Agastinose Ronickom1,Josena Thomas Raj2,Palaniappan Rajkumar1,Mythili Asaithambi1

Affiliation:

1. School of Electronics Engineering, Biomedical Technology Division, VIT University, Vellore, India

2. Department of Computer Science Engineering, Easwari Engineering College, Chennai, India

Abstract

The development of reliable Computer Aided Diagnosis (CAD) systems would help in the early detection of Knee Joint Disorder (KJD). In this work, normal and KJD vibroarthrographic (VAG) signals are classified using multifractals and Support Vector Machines (SVM). Multifractal dimension [Formula: see text] is calculated from the VAG signals for various [Formula: see text]-values ([Formula: see text]). Geometrical features are calculated from the multifractal spectrum. The dimension of the feature set is reduced using Principal Component Analysis (PCA). The significant features obtained from the multifractal spectrum are fed as the input to the SVM classifier. The accuracy of the classifier is analyzed using kernels such as linear, quadratic, polynomial and Radial Basis Functions (RBF). The results suggest that VAG signals exhibits the multifractal property. The fluctuations in the normal and abnormal signals are well predicted in small scales of segments of time series. The features such as [Formula: see text] and Mean[Formula: see text] are high in abnormal VAG signals. These features give statistically significant values in differentiating the normal and abnormal subjects ([Formula: see text]). The area under the Receiver Operating Characteristic (ROC) curve is high for polynomial function (0.98). The SVM classifier with polynomial function gives 92.13% of accuracy in differentiating the normal and abnormal subjects. The calculation of multifractal spectrum and geometrical features from VAG signals requires optimization of few parameters, easy to compute, computationally inexpensive, and less time consuming. Hence, the CAD system seems to be clinically significant for the classification of normal and KJD subjects.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3