Publisher
Springer Nature Singapore
Reference20 articles.
1. Jac Fredo AR, Josena TR, Palaniappan R, Mythili A (2017) Classification of normal and knee joint disorder vibroarthrographic signals using multifractals and support vector machines. Biomed Eng: Appl, Basis Commun 29(03):1750016
2. Sharma M, Sharma P, Pachori RB, Gadre MV (2019) Double density dual-tree complex wavelet transform-based features for automated screening of knee-joint vibroarthrographic signals. In: Machine intelligence and signal analysis. Springer, Singapore, pp 279–290
3. Krishnan S, Rangayyan RM, Bell GD, Frank CB (2000) Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology. IEEE Trans Biomed Eng 47(6):773–783
4. Gupta K, Bajaj V, Ansari IA (2021) OSACN-Net: automated classification of sleep apnea using deep learning model and smoothed gabor spectrograms of ECG signal. IEEE Trans Instrum Meas 71(19):4002109
5. Gupta K, Bajaj V, Ansari IA (2022) An improved deep learning model for automated detection of BBB using ST spectrograms of smoothed VCG signal. IEEE Sens J. https://doi.org/10.1109/JSEN.2022.3162022