MULTIPLE CLASSIFICATION TECHNIQUES TOWARD A ROBUST AND RELIABLE P300 BCI SYSTEM

Author:

Labib Fatma EL-Zahraa M.1,Fouad Islam A.2ORCID,Mabrouk Mai S.2,Sharawy Amr A.1

Affiliation:

1. Systems and Biomedical Engineering Department, Cairo University, Giza, Egypt

2. Biomedical Engineering Department, MUST University, Giza, Egypt

Abstract

A brain–computer interface (BCI) can be used for people with severe physical disabilities such as ALS or amyotrophic lateral sclerosis. BCI can allow these individuals to communicate again by creating a new communication channel directly from the brain to an output device. BCI technology can allow paralyzed people to share their intent with others, and thereby demonstrate that direct communication from the brain to the external world is possible and that it might serve useful functions. BCI systems include machine learning algorithms (MLAs). Their performance depends on the feature extraction and classification techniques employed. In this paper, we propose a system to exploit the P300 signal in the brain, a positive deflection in event-related potentials. The P300 signal can be incorporated into a spelling device. There are two benefits behind this kind of research. First of all, this work presents the research status and the advantages of communication via a BCI system, especially the P300 BCI system for disordered people, and the related literature review is presented. Secondly, the paper discusses the performance of different machine learning algorithms. Two different datasets are presented: the first dataset 2004 and the second dataset 2019. A preprocessing step is introduced to the subjects in both datasets first to extract the important features before applying the proposed machine learning methods: linear discriminant analysis (LDA I and LDA II), support vector machine (SVM I, SVM II, SVM III, and SVM IV), linear regression (LREG), Bayesian linear discriminant analysis (BLDA), and twin support vector machine (TSVM). By comparing the performance of the different machine learning systems, in the first dataset it is found that BLDA and SVMIV classifiers yield the highest performance for both subjects “A” and “B”. BLDA yields 98% and 66% for 15th and 5th sequences, respectively, whereas SVMIV yields 98% and 54.4% for 15th and 5th sequences, respectively. While in the second dataset, it is obvious that BLDA classifier yields the highest performance for both subjects “1” and “2”, it achieves 90.115%. The paper summarizes the P300 BCI system for the two introduced datasets. It discusses the proposed system, compares the classification methods performances, and considers some aspects for the future work to be handled. The results show high accuracy and less computational time which makes the system more applicable for online applications.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3