Role of Deep Learning in Improving the Performance of Driver Fatigue Alert System

Author:

Fouad Islam A.,Labib Fatma El-Zahraa M.

Abstract

Driver fatigue detection system aims to monitor the driver state. When detecting a fatigue caused by different attitudes other than normal driving habit, the system warns the driver that traveling should be interrupted. In this way, it helps the driver to make the right decision. The aim of this study is to prevent traffic accidents. The system analyzes any changes in the driver's eyes and mouth features in real time and warns the driver when necessary. The proposed system contains several stages to detect the driver's fatigue. First, the preprocessing stage; enhancement of the frames, determining the face, and cropping eyes and mouth of the driver was done. Then, dealing with feature extraction stage; the features concerning each frame was processed. Finally, two classification approaches were presented and a comparison between them was addressed. In the first approach, four traditional classifiers were applied; Diagonal Linear Discriminant Analysis (DiagLDA), Linear Support Vector Machine (LSVM), K-Nearest Neighbor (KNN), and Random Forest Classifier (RFC). The results show that two classifiers; KNN and RFC yield the highest average accuracy of 91.94% for all subjects presented in this paper. In the second approach, one model of deep learning neural network (CNN) was applied; "Resnet-50" model. The results also show that the proposed deep learning model yields a high average accuracy of 96.3889% for the same data. In general, the drowsiness and lost focus of drivers with high accuracy have been detected with the developed image processing based system, which makes it practicable and reliable for real-time applications.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3