Abstract
In this article we prove the existence of an infinite number of radial solutions to \(\Delta u+K(r)f(u)=0\) on \(\mathbb{R}^{N}\) such that \(\lim_{r \to \infty} u(r)=0\) with prescribed number of zeros on the exterior of the ball of radius R>0 where f is odd with f<0 on \((0,\beta)\), f>0 on \((\beta,\infty)\) with f superlinear for large \(u\), and \(K(r) \sim r^{-\alpha}\) with \( \alpha > 2(N-1)\).
For more information see https://ejde.math.txstate.edu/Volumes/2020/34/abstr.html
Reference10 articles.
1. A. Adebe, M. Chhetri, L. Sankar, R. Shivaji; Positive solutions for a class of superlinear semipositone systems on exterior domains. Boundary Value Problems, 2014:198, 2014. https://doi.org/10.1186/s13661-014-0198-z
2. H. Berestycki, P. L. Lions; Non-linear scalar field equations I & II, Arch. Rational Mech. Anal., Volume 82, 313-375, 1983. https://doi.org/10.1007/BF00250556
3. M. Berger, Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
4. G. Birkhoff, G. C. Rota; Ordinary Differential Equations, Ginn and Company, 1962.
5. M. Chhetri, R. Shivaji, B. Son, L. Sankar; An existence result for superlinear semipositone p-Laplacian systems on the exterior of a ball, Differential Integral Equations, 31, no. 7-8, 643-656, 2018. https://doi.org/10.57262/die/1526004034
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献