Crossing limit cycles for a class of piecewise linear differential centers separated by a conic

Author:

Jimenez Johana,Llibre Jaume,Medrado Joao C.

Abstract

In previous years the study of the version of Hilbert's 16th problem for piecewise linear differential systems in the plane has increased. There are many papers studying the maximum number of crossing limit cycles when the differential system is defined in two zones separated by a straight line. In particular in [11,13] it was proved that piecewise linear differential centers separated by a straight line have no crossing limit cycles. However in [14,15] it was shown that the maximum number of crossing limit cycles of piecewise linear differential centers can change depending of the shape of the discontinuity curve. In this work we study the maximum number of crossing limit cycles of piecewise linear differential centers separated by a conic.differential centers separated by a conic For more information see https://ejde.math.txstate.edu/Volumes/2020/41/abstr.html

Publisher

Texas State University

Subject

Analysis

Reference26 articles.

1. A. Andronov, A. Vitt, S. Khaikin; Theory of Oscillations, Pergamon Press, Oxford, 1966.

2. J. C. Artés, J. Llibre, J. C Medrado, M. A. Teixeira; Piecewise linear with two real saddles, Math. Comput. Simulation, 95 (2014), 13-22. https://doi.org/10.1016/j.matcom.2013.02.007

3. B. P. Belousov; Periodically acting reaction and its mechanism, Collection of abstracts on radiation medicine, Moscow, pp. 145-147, 1958.

4. M. Di Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk; Piecewise-Smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci. Series 163, Springer-Verlag, London, 2008.

5. R. D. Euzébio, J. Llibre; On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line, J. Math. anal. Appl., 424 (1) (2015), 475-486. https://doi.org/10.1016/j.jmaa.2014.10.077

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global dynamics of the May-Leonard system with a Darboux invariant;Electronic Journal of Differential Equations;2020-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3