Global dynamics of the May-Leonard system with a Darboux invariant

Author:

Oliveira Regilene,Valls Claudia

Abstract

We study the global dynamics of the classic May-Leonard model in \(\mathbb{R}^3\). Such model depends on two real parameters and its global dynamics is known when the system is completely integrable. Using the Poincare compactification on \(\mathbb R^3\) we obtain the global dynamics of the classical May-Leonard differential system in \(\mathbb{R}^3\) when \(\beta =-1-\alpha\). In this case, the system is non-integrable and it admits a Darboux invariant. We provide the global phase portrait in each octant and in the Poincar\'e ball, that is, the compactification of \(\mathbb R^3\) in the sphere \(\mathbb{S}^2\) at infinity. We also describe the \(\omega\)-limit and \(\alpha\)-limit of each of the orbits. For some values of the parameter \(\alpha\) we find a separatrix cycle \(F\) formed by orbits connecting the finite singular points on the boundary of the first octant and every orbit on this octant has \(F\) as the \(\omega\)-limit. The same holds for the sixth and eighth octants. For more information see https://ejde.math.txstate.edu/Volumes/2020/55/abstr.html

Publisher

Texas State University

Subject

Analysis

Reference17 articles.

1. A. Battauz, F. Zanolin; Coexistence states for periodic competitive Kolmogorov system, J. Math. Anal. Appl. 219 (1998), 179-199. https://doi.org/10.1006/jmaa.1997.5726

2. G. Blé, V. Castellanos, J. Llibre, I. Quilantán; Integrability and global dynamics of the May Leonard model, Nonlinear Anal. Real World Appl. 14 (2013), 280-293. https://doi.org/10.1016/j.nonrwa.2012.06.004

3. F. H. Busse; Transition to turbulence via the statistical limit cycle rout, Syneretics, Springer Verlag, 1978.

4. F. Dumortier, J. Llibre, J. C. Art'es; Qualitative Theory of Planar Differential Systems, UniversiText, Springer-verlag, New York, 2006.

5. P. Glansdorff, I. Prigogine; Thermodynamic theory of structure, stability and fluctuations, John Wiley & Sons Ltd, London 1971.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3