Machine Learning Methods for Prediction of Hospital Mortality in Patients with Coronary Heart Disease after Coronary Artery Bypass Grafting

Author:

Geltser B. I.1ORCID,Shahgeldyan K. J.2ORCID,Rublev V. Y.3ORCID,Kotelnikov V. N.4ORCID,Krieger A. B.2ORCID,Shirobokov V. G.2ORCID

Affiliation:

1. Far Eastern federal university. School of biomedicine. Vladivostok

2. Institute of Information Technologies, Vladivostok State University of Economics and Service, Vladivostok

3. Regional Clinical Hospital No. 1, Vladivostok

4. Far Eastern Federal University. School of biomedicine, Vladivostok

Abstract

Aim      To compare the accuracy of predicting an in-hospital fatal outcome for models based on current machine-learning technologies in patients with ischemic heart disease (IHD) after coronary bypass (CB) surgery.Material and methods  A retrospective analysis of 866 electronic medical records was performed for patients (685 men and 181 women) who have had a CB surgery for IHD in 2008–2018. Results of clinical, laboratory, and instrumental evaluations obtained prior to the CB surgery were analyzed. Patients were divided into two groups: group 1 included 35 (4 %) patients who died within the first 20 days of CB, and group 2 consisted of 831 (96 %) patients with a beneficial outcome of the surgery. Predictors of the in-hospital fatal outcome were identified by a multistep selection procedure with analysis of statistical hypotheses and calculation of weight coefficients. For construction of models and verification of predictors, machine-learning methods were used, including the multifactorial logistic regression (LR), random forest (RF), and artificial neural networks (ANN). Model accuracy was evaluated by three metrics: area under the ROC curve (AUC), sensitivity, and specificity. Cross validation of the models was performed on test samples, and the control validation was performed on a cohort of patients with IHD after CB, whose data were not used in development of the models.Results The following 7 risk factors for in-hospital fatal outcome with the greatest predictive potential were isolated from the EuroSCORE II scale: ejection fraction (EF) <30 %, EF 30-50 %, age of patients with recent MI, damage of peripheral arterial circulation, urgency of CB, functional class III-IV chronic heart failure, and 5 additional predictors, including heart rate, systolic blood pressure, presence of aortic stenosis, posterior left ventricular (LV) wall relative thickness index (RTI), and LV relative mass index (LVRMI). The models developed by the authors using LR, RF and ANN methods had higher AUC values and sensitivity compared to the classical EuroSCORE II scale. The ANN models including the RTI and LVRMI predictors demonstrated a maximum level of prognostic accuracy, which was illustrated by values of the quality metrics, AUC 93 %, sensitivity 90 %, and specificity 96 %. The predictive robustness of the models was confirmed by results of the control validation.Conclusion      The use of current machine-learning technologies allowed developing a novel algorithm for selection of predictors and highly accurate models for predicting an in-hospital fatal outcome after CB. 

Publisher

APO Society of Specialists in Heart Failure

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3