Community‐Engaged Assessment of Soil Lead Contamination in Atlanta Urban Growing Spaces

Author:

Peters Samuel J. W.1ORCID,Warner Sydney M.2,Saikawa Eri12ORCID,Ryan P. Barry1ORCID,Panuwet Parinya1,Barr Dana B.1,D'Souza Priya E.1,Frank Gil3,Hernandez Rosario3,Alvarado Taranji3,Hines Arthur3,Theal Chris3

Affiliation:

1. Gangarosa Department of Environmental Health Rollins School of Public Health Emory University Atlanta GA USA

2. Department of Environmental Sciences Emory University Atlanta GA USA

3. Historic Westside Gardens Atlanta Atlanta GA USA

Abstract

AbstractUrban agriculture is emerging as a method to improve food security and public health in cities across the United States. However, an increased risk of exposure to heavy metals and metalloids (HMM) exists through interaction with contaminated soil. Community‐engaged research (CEnR) is one method that can promote the inclusion of all partners when studying exposures such as HMM in soil. Researchers and community gardeners co‐designed this study to measure the concentrations of lead (Pb), using X‐Ray Fluorescence (XRF) verified with Inductively Coupled Plasma‐Mass Spectrometry (ICP‐MS) in soils from 19 urban agricultural and residential sites in the Westside of Atlanta and three rural sites in Georgia. Seventeen other HMM were measured but not included in this study, because they did not pose risks to the community comparable to elevated Pb levels. Pb concentrations were compared to the Environmental Protection Agency (EPA)'s regional screening levels (RSLs) for residential soil and the University of Georgia (UGA) extension service's low‐risk levels (LRLs) for agriculture. Soils from the majority of sites had levels below EPA RSLs for Pb, yet above the UGA LRL. However, soil Pb concentrations were three times higher than the EPA RSL on some sites that contained metal refining waste or slag. Our findings led to direct action by local and federal government agencies to initiate the cleanup of slag residue. Studies involving exposures to communities should engage those affected throughout the process for maximum impact.

Publisher

American Geophysical Union (AGU)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Epidemiology,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3