Phytoremediation of Lead‐Contaminated Soil in the Westside of Atlanta, GA

Author:

Yao X.1,Saikawa E.12ORCID,Warner S.1,D’Souza P. E.2,Ryan P. B.2ORCID,Barr D. B.2

Affiliation:

1. Department of Environmental Sciences Emory University Atlanta GA USA

2. Gangarosa Department of Environmental Health Emory University Atlanta GA USA

Abstract

AbstractPhytoremediation has been explored as a cost‐effective method to remediate soil Pb contamination. A greenhouse study was conducted to evaluate the efficacy of Vigna unguiculata, Brassica pekinensis, Gomphrena globose, and Helianthus annuus for removing and immobilizing Pb in soil collected from the Westside Lead Superfund site in Atlanta. Plants were cultivated in sampled soil with a Pb concentration of 515 ± 10 mg/kg for 60 days. Soils growing H. annuus were additionally treated with ethylenediaminetetraacetic acid (EDTA) (0.1 g/kg) or compost (20% soil blend) to assess their capabilities for enhancing phytoremediation. Mean post‐phytoremediation Pb concentrations in the four plant species were 23.5, 25.7, 50.0, and 58.1 mg/kg dry weight (DW), respectively, and were substantially higher than 1.55 mg/kg DW in respective plant species grown in control soils with no Pb contamination. The highest Pb concentration, translocation factor, and biomass were found in V. unguiculate among four species without soil amendments. H. annuus treated with EDTA and compost resulted in a significant increase in the total Pb uptake and larger biomass compared to non‐treated plants, respectively. Although this study found that V. unguiculata was the best candidate for Pb accumulation and immobilization among four species, soil remediation was limited to 54 mg/kg in a growing season. We find that it is critically important to perform phytostabilization in a secure manner, since Pb bioavailability of edible plant parts implies the potential risk associated with their unintentional consumption. Efficiently and effectively remediating Pb‐contaminated soils in a low‐cost manner needs to be further studied.

Funder

U.S. Environmental Protection Agency

Publisher

American Geophysical Union (AGU)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Epidemiology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3