Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Process‐Based Hydrological Models
Author:
Affiliation:
1. College of Hydrology and Water Resources Hohai University Nanjing China
2. Water Research Centre School of Civil and Environmental Engineering University of New South Wales Sydney NSW Australia
Funder
Fundamental Research Funds for the Central Universities
China Scholarship Council
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2021WR029772
Reference113 articles.
1. A review of uncertainty quantification in deep learning: Techniques, applications and challenges
2. An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction
3. Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble
4. A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall-runoff modeling
5. Pyro: Deep universal probabilistic programming;Bingham E.;Journal of Machine Learning Research,2019
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing probabilistic hydrological predictions with mixture density Networks: Accounting for heteroscedasticity and Non-Gaussianity;Journal of Hydrology;2024-09
2. A Bayesian deep learning approach for video-based estimation and uncertainty quantification of urban rainfall intensity;Journal of Hydrology;2024-08
3. Seismo-ionospheric precursory detection using hybrid Bayesian-LSTM network model with uncertainty-boundaries and anomaly-intensity;Advances in Space Research;2024-08
4. Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method;Hydrology and Earth System Sciences;2024-07-03
5. Long Short-Term Memory Networks’ Application on Typhoon Wave Prediction for the Western Coast of Taiwan;Sensors;2024-07-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3