Affiliation:
1. Department of Applied Artificial Intelligence, Ming Chuan University, Taoyuan 33348, Taiwan
2. Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
Abstract
Huge waves caused by typhoons often induce severe disasters along coastal areas, making the effective prediction of typhoon-induced waves a crucial research issue for researchers. In recent years, the development of the Internet of Underwater Things (IoUT) has rapidly increased the prediction of oceanic environmental disasters. Past studies have utilized meteorological data and feedforward neural networks (e.g., BPNN) with static network structures to establish short lead time (e.g., 1 h) typhoon wave prediction models for the coast of Taiwan. However, sufficient lead time for prediction remains essential for preparedness, early warning, and response to minimize the loss of lives and properties during typhoons. The aim of this research is to construct a novel long lead time typhoon-induced wave prediction model using Long Short-Term Memory (LSTM), which incorporates a dynamic network structure. LSTM can capture long-term information through its recurrent structure and selectively retain necessary signals using memory gates. Compared to earlier studies, this method extends the prediction lead time and significantly improves the learning and generalization capability, thereby enhancing prediction accuracy markedly.
Funder
National Science and Technology Council
Reference44 articles.
1. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications;Guizani;IEEE Comm. Surv. Tutor.,2015
2. An overview of the internet of underwater things;Domingo;J. Netw. Comput. Appl.,2012
3. Tides and storm surges in a long uniform gulf;Doodson;Proc. R. Soc. A,1956
4. Steele, J., Thorpe, S., and Turekian, K. (2001). Storm surges. Encyclopaedia of Ocean Science, 630 Academia.
5. Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing;Emanuel;J. Adv. Model. Earth Syst.,2013