The Future of Soils in the Midwestern United States

Author:

Kwang J. S.12ORCID,Thaler E. A.13ORCID,Larsen I. J.1ORCID

Affiliation:

1. Department of Earth, Geographic, and Climate Sciences University of Massachusetts Amherst MA USA

2. Now at Saint Anthony Falls Laboratory University of Minnesota Minneapolis MN USA

3. Now at Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos NM USA

Abstract

AbstractSoil is the source of the vast majority of food consumed on Earth, and soils constitute the largest terrestrial carbon pool. Soil erosion associated with agriculture reduces crop productivity, and the redistribution of soil organic carbon (SOC) by erosion has potential to influence the global carbon cycle. Tillage strongly influences the erosion and redistribution of soil and SOC. However, tillage is rarely considered in predictions of soil erosion in the U.S.; hence regionwide estimates of both the current magnitude and future trends of soil redistribution by tillage are unknown. Here we use a landscape evolution model to forecast soil and SOC redistribution in the Midwestern United States over centennial timescales. We predict that present‐day rates of soil and SOC erosion are 1.1 ± 0.4 kg ⋅ m−‐2 ⋅ yr−‐1 and 12 ± 4 g ⋅ m−2 ⋅ yr−1, respectively, but these rates will rapidly decelerate due to diffusive evolution of topography and the progressive depletion of SOC in eroding soil profiles. After 100 years, we forecast that 8.8 (+1.9/−2.1) Pg of soil and 0.17 (+0.03/−0.04) Pg of SOC will have eroded, causing the surface concentration of SOC to decrease by 4.4% (+0.9/−1.1%). Model simulations that include more widespread adoption of low‐intensity tillage (i.e., no‐till farming) determine that soil redistribution, SOC redistribution, and surficial SOC loss after 100 years would decrease by ∼95% if low‐intensity tillage is fully adopted. Our findings indicate that low‐intensity tillage could greatly decrease soil degradation and that the potential for agricultural soil erosion to influence the global carbon cycle will diminish with time due to a reduction in SOC burial.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3