Affiliation:
1. Department of Biological Sciences Virginia Polytechnic Institute and State University Blacksburg VA USA
2. Department of Biochemistry Virginia Polytechnic Institute and State University Blacksburg VA USA
Abstract
AbstractNon‐perennial headwaters experience extremes in flow conditions that likely influence carbon fate. As surface waters contract through dry periods, reconnect during storms, and re‐expand or dry again, there is a great deal of variability in carbon emissions and export. We measured discharge, dissolved oxygen, carbon dioxide (CO2), and dissolved organic carbon (DOC) continuously in a persistent pool at the base of a non‐perennial, forested headwater stream in the southeastern United States to characterize how flow changes affect carbon emissions and export as the stream expands and shrinks. We also compared carbon concentrations and export during different stream flow categories before and after fall wet‐up. CO2 concentrations were high when discharge was lowest (median = 10.2 mg L−1) and low during high flows (3.2 mg L−1) and storms (1.1 mg L−1). High CO2 concentrations led to high emissions on a per area basis during low flow times, but whole‐channel stream CO2 emissions were limited by the small surface area of the stream during periods of surface water disconnection. DOC concentration varied by season (range = 0.1–16.2 mg L−1) with large pulses during smaller summer storms. We found that CO2 and DOC concentrations differed among binned stages of stream flow. As non‐perennial streams become more prevalent across the southeastern United States due to shifts in climate, the relationships between flow and carbon movement into and out of stream networks will become increasingly critical to understanding stream carbon biogeochemistry.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献