Desiccation time and rainfall control gaseous carbon fluxes in an intermittent stream

Author:

Arce Maria IsabelORCID,Bengtsson Mia M.ORCID,von Schiller DanielORCID,Zak DominikORCID,Täumer JanaORCID,Urich TimORCID,Singer GabrielORCID

Abstract

AbstractDroughts are recognized to impact global biogeochemical cycles. However, the implication of desiccation on in-stream carbon (C) cycling is not well understood yet. We subjected sediments from a lowland, organic rich intermittent stream to experimental desiccation over a 9-week-period to investigate temporal changes in microbial functional traits in relation to their redox requirements, carbon dioxide (CO2) and methane (CH4) fluxes and water-soluble organic carbon (WSOC). Concurrently, the implications of rewetting by simulated short rainfalls (4 and 21 mm) on gaseous C fluxes were tested. Early desiccation triggered dynamic fluxes of CO2 and CH4 with peak values of 383 and 30 mg C m−2 h−1 (mean ± SD), respectively, likely in response to enhanced aerobic mineralization and accelerated evasion. At longer desiccation, CH4 dropped abruptly, likely because of reduced abundance of anaerobic microbial traits. The CO2 fluxes ceased later, suggesting aerobic activity was constrained only by extended desiccation over time. We found that rainfall boosted fluxes of CO2, which were modulated by rainfall size and the preceding desiccation time. Desiccation also reduced the amount of WSOC and the proportion of labile compounds leaching from sediment. It remains questionable to which extent changes of the sediment C pool are influenced by respiration processes, microbial C uptake and cell lysis due to drying-rewetting cycles. We highlight that the severity of the dry period, which is controlled by its duration and the presence of precipitation events, needs detailed consideration to estimate the impact of intermittent flow on global riverine C fluxes.

Funder

Alexander von Humboldt-Stiftung

Ministerio de Ciencia, Innovación y Universidades

Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB) im Forschungsverbund Berlin e.V.

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3