Affiliation:
1. Ministry of Education Key Laboratory of Building Safety and Energy Efficiency College of Civil Engineering Hunan University Changsha China
2. Department of Civil and Environmental Engineering Colorado School of Mines Golden CO USA
Abstract
AbstractSoil matric potential and osmotic potential are widely accepted as two independent components of total soil water potential. However, laboratory observations repeatedly demonstrated that matric potential can vary with salt concentration, implying a potential coupling between matric potential and osmotic potential. To date, it remains elusive whether matric potential and osmotic potential are independent or not and why so, and a theoretical theory for quantifying the coupling between them is still missing. Herein, a theoretical model is developed to quantitatively explain this problem via a lens provided by a recent concept of soil sorptive potential (SSP). The proposed model substantiates that matric potential and osmotic potential are not independent. The increasing salt concentration can notably depress two variables underpinning SSP, namely relative permittivity and electrical double layer thickness, leading to non‐negligible decreasing (more negative) of matric potential in the high suction range, and increasing (less negative) of it in the low suction range. In turn, the soil‐water interactions redistribute ions in soil water, raising osmotic potential especially for clay with high cation exchange capacity. The proposed model shows excellent performance in capturing experimental data, validating its accuracy. A parametric study implies that the neglection of coupling effects can lead to a significant underestimation of soil hydraulic conductivity in the film flow regime.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献