Predicting the Electrical Conductivity of Partially Saturated Frozen Porous Media, a Fractal Model for Wide Ranges of Temperature and Salinity

Author:

Luo Haoliang1ORCID,Jougnot Damien1ORCID,Jost Anne1ORCID,Teng Jidong2ORCID,Mendieta Aida1ORCID,Lin Gang3,Thanh Luong Duy4

Affiliation:

1. Sorbonne Université CNRS UMR 7619 METIS Paris France

2. School of Civil Engineering Central South University Changsha China

3. Laboratoire de Géologie Ecole Normale Supérieure Paris France

4. Thuyloi University Dong Da Vietnam

Abstract

AbstractThe quantitative determination of liquid water content and salinity in soils is crucial for the preservation of hydrological environments and engineering infrastructures, especially in frozen regions. Electrical conductivity, as a fundamental physical parameter in electrical and electromagnetic non‐destructive techniques, varies significantly with the physical and chemical properties, such as pore water conductivity, salinity, water saturation, and temperature. In this study, accounting for pore size and tortuous length following fractal distributions, we develop a new capillary bundle model for variation of electrical conductivity as a function of temperature in broad water saturation and salinity ranges. In this new model, we consider the contributions of bulk and surface conductivities to the total electrical conductivity. To test this model, a series of laboratory experiments were carried out for different initial water saturations and salinities using an electrical resistance apparatus and a nuclear magnetic resonance method. The experimental results show that unfrozen water saturation and ionic concentration affect the electrical conductivity of unsaturated frozen soils. Furthermore, the proposed model is capable of fitting the main trends of the experimental data from the literature and acquired in this study in unfrozen‐frozen conditions for different water contents. Relying on the proposed model, we also determine the expression of the apparent formation factor, which is significantly sensitive to porosity, water saturation, and temperature. The predicted values of the apparent formation factor also agree very well with the experimental data. This new capillary bundle model provides a new perspective in interpreting electrical monitoring to easily deduce changes in key variables in the cryosphere such as liquid water content and moisture gradients.

Funder

China Scholarship Council

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3