Identifying the Most (Cost‐)Efficient Regions for CO2 Removal With Iron Fertilization in the Southern Ocean

Author:

Bach Lennart T.1ORCID,Tamsitt Veronica2ORCID,Baldry Kimberlee1,McGee Jeffrey13,Laurenceau‐Cornec Emmanuel C.14ORCID,Strzepek Robert F.15,Xie Yinghuan1ORCID,Boyd Philip W.15

Affiliation:

1. Institute for Marine and Antarctic Studies University of Tasmania Hobart TAS Australia

2. College of Marine Science University of South Florida St. Petersberg FL USA

3. Faculty of Law University of Tasmania Hobart TAS Australia

4. CNRS IRD Ifremer LEMAR University of Brest Plouzane France

5. Australian Antarctic Program Partnership Hobart TAS Australia

Abstract

AbstractOcean iron fertilization (OIF) aims to remove carbon dioxide (CO2) from the atmosphere by stimulating phytoplankton carbon‐fixation and subsequent deep ocean carbon sequestration in iron‐limited oceanic regions. Transdisciplinary assessments of OIF have revealed overwhelming challenges around the detection and verification of carbon sequestration and wide‐ranging environmental side‐effects, thereby dampening enthusiasm for OIF. Here, we utilize five requirements that strongly influence whether OIF can lead to atmospheric CO2 removal (CDR): The requirement (a) to use preformed nutrients from the lower overturning circulation cell; (b) for prevailing iron‐limitation; (c) for sufficient underwater light for photosynthesis; (d) for efficient carbon sequestration; (e) for sufficient air‐sea CO2 transfer. We systematically evaluate these requirements using observational, experimental, and numerical data in an “informed back‐of‐the‐envelope approach” to generate circumpolar maps of OIF (cost‐)efficiency south of 60°S. Results suggest that (cost‐)efficient CDR is restricted to locations on the Antarctic Shelf. Here, CDR costs can be <100 US$/tonne CO2 while they are mainly >>1,000 US$/tonne CO2 in offshore regions of the Southern Ocean, where mesoscale OIF experiments have previously been conducted. However, sensitivity analyses underscore that (cost‐)efficiency is in all cases associated with large variability and are thus difficult to predict, which reflects our insufficient understanding of the relevant biogeochemical and physical processes. While OIF implementation on Antarctic shelves appears most (cost‐)efficient, it raises legal questions because regions close to Antarctica fall under three overlapping layers of international law. Furthermore, the constraints set by (cost‐)efficiency reduce the area suitable for OIF, thereby likely reducing its maximum CDR potential.

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3