Skillful Coupled Atmosphere‐Ocean Forecasts on Interannual to Decadal Timescales Using a Linear Inverse Model

Author:

Taylor L. M.1ORCID,Hakim G. J.1ORCID

Affiliation:

1. University of Washington Seattle WA USA

Abstract

AbstractThere are two major challenges to improving interannual to decadal forecasts: (a) consistently initializing the coupled system so that variability is not dominated by initial imbalances, and (b) having a large sample of different initial conditions on which to test forecast skill. The second challenge requires consideration of time periods not only outside the recent period of intensive ocean observation, but also before the instrumental era, which increases the importance of the first challenge. Forecasts prior to the 1850s isolate internally generated sources of variability by removing the majority of anthropogenic forcing, and the sparse observational record during this time period motivates the use of paleoclimate proxy data. We address these issues by using a linear inverse model (LIM) approach and a recent proxy‐based reconstruction over the last millennium at annual resolution. The reconstruction is used to train, initialize, and validate LIM forecasts. The LIM trained on paleo‐data assimilated using a LIM trained on global climate model (GCM) simulation data outperforms a LIM trained on raw GCM data at forecast leads longer than 2 years for in‐sample experiments, and beyond 4‐year leads in most out‐of‐sample experiments validated on instrumental data. The most skillful normal mode of the paleo‐data LIM for the instrumental experiment represents a persistent pattern with a longer decay time than for the GCM‐LIM's modes, which accounts for the outperformance at longer leads. The paleo‐data LIM is consequently more sensitive to ocean initialization, which is reflected in forecasts during the instrumental era where ocean reanalyses exhibit large uncertainty.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3