Deriving Sea Subsurface Temperature Fields From Satellite Remote Sensing Data Using a Generative Adversarial Network Model

Author:

Zhang Jiali1ORCID,Ning Pengfei12,Zhang Xuefeng1ORCID,Wang Xidong3ORCID,Zhang Anmin1

Affiliation:

1. School of Marine Science and Technology Tianjin University Tianjin China

2. National Marine Data and Information Service Tianjin China

3. Key Laboratory of Marine Hazards Forecasting Ministry of Natural Resources Hohai University Nanjing China

Abstract

AbstractAccurately inverting global and regional subsurface temperature (ST) by multisource satellite observations is a challenging but hot topic. This study proposes a new method to invert daily ST from the sea surface information in China's marginal seas based on generative adversarial network (GAN) model. The proposed GAN‐based model can project the STs from sea surface information (SLA, SSTA, SST) with a high resolution of 1/12°. A traditional regression‐based model, Modular Ocean Data Assimilation System (MODAS), is set up same experiments for comparison. The results show that the averaged root mean square error results are less than 1.45°C in the upper 200 m and the highest averaged R2 of 0.97 at the 70 m level, which is better than that of MODAS. Errors analysis and typical oceanographic phenomena analysis results show the superiority of the proposed GAN‐based model in this study. This study can provide high‐precision daily ST data from sea surface information, which can be expanded to further studies on the interior ocean variation characteristics.

Funder

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3