A Method for Predicting High-Resolution 3D Variations in Temperature and Salinity Fields Using Multi-Source Ocean Data

Author:

Cao Xiaohu1ORCID,Liu Chang12,Zhang Shaoqing134ORCID,Gao Feng15ORCID

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

2. Qingdao Hatran Ocean Intelligence Technology Co., Ltd., Qingdao 266400, China

3. Key Laboratory of Physical Oceanography, MOE, Institute for Advanced Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China, Qingdao 266100, China

4. The College of Ocean and Atmosphere, Ocean University of China, Qingdao 266100, China

5. Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China

Abstract

High-resolution three-dimensional (3D) variations in ocean temperature and salinity fields are of great significance for ocean environment monitoring. Currently, AI-based 3D temperature and salinity field predictions rely on expensive 3D data, and as the prediction period increases, the stacking of high-resolution 3D data greatly increases the difficulty of model training. This paper transforms the prediction of 3D temperature and salinity into the prediction of sea surface elements and the inversion of subsurface temperature and salinity using sea surface elements, by leveraging the relationship between sea surface factors and subsurface temperature and salinity. This method comprehensively utilizes multi-source ocean data to avoid the issue of data volume caused by stacking high-resolution historical data. Specifically, the model first utilizes 1/4° low-resolution satellite remote sensing data to construct prediction models for sea surface temperature (SST) and sea level anomaly (SLA), and then uses 1/12° high-resolution temperature and salinity data as labels to build an inversion model of subsurface temperature and salinity based on SST and SLA. The prediction model and inversion model are integrated to obtain the final high-resolution 3D temperature and salinity prediction model. Experimental results show that the 20-day prediction results in the two sea areas of the coastal waters of China and the Northwest Pacific show good performance, accurately predicting ocean temperature and salinity in the vast majority of layers, and demonstrate higher resource utilization efficiency.

Funder

the Cultivation Project of Qingdao Science and Technology Plan Park

the Key R&D Program Projects of Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3