Spatial Distribution of Bioavailable Inorganic Nitrogen From Thawing Permafrost

Author:

Hansen Hans Frederik Engvej1,Elberling Bo1ORCID

Affiliation:

1. Center for Permafrost (CENPERM) Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark

Abstract

AbstractArctic permafrost contains large amounts of nitrogen (N), which may be bioavailable upon permafrost thaw. Here, we have compiled inorganic N data from published studies on the active layer and permafrost layers combined with new data to quantify the spatial variability of bioavailable inorganic N in permafrost‐affected ecosystems across the Northern Hemisphere. Ammonium (NH4+) and nitrate (NO3) are typically extracted from samples using different agents and strength. The results of an extraction experiment are here used to recalculate published concentrations on NH4+ and NO3 to a “water extractable fraction.” The results show that upper permafrost across all sites and samples contains significantly more NH4+ compared to the root zone and was significantly and positively correlated with an increasing water/ice content despite a surprisingly high variation within and between sites. Based on the average reported permafrost thaw rates (0.4–0.8 cm y−1) for wet and dry landscape types, the average release of inorganic N (NH4+ and NO3) from wet tundra ecosystems was calculated to be 2.0 [1.13–2.61] kg N ha−1 decade−1 and 1.3 [0.78–1.81] kg N ha−1 decade−1 for dry ecosystems. This brings permafrost‐derived inorganic N on the same order of magnitude as biological nitrogen fixation in relatively dry tundra ecosystems but only marginally compared to nitrogen fixation in wet ecosystems. These landscape‐specific variations highlight the need for improving the understanding of N mobilization linked to permafrost thawing, but also that N transfer from well‐drained slopes to lower parts of the landscape can be important for the potential plant growth (greening) downslope from surrounding landscape types with faster permafrost thawing.

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3