Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost

Author:

Abbott B. W.ORCID,Jones J. B.,Godsey S. E.,Larouche J. R.,Bowden W. B.

Abstract

Abstract. As high latitudes warm, vast stocks of carbon and nitrogen stored in permafrost will become available for transport to aquatic ecosystems. While there is a growing understanding of the potential effects of permafrost collapse (thermokarst) on aquatic biogeochemical cycles, neither the spatial extent nor temporal duration of these effects is known. To test hypotheses concerning patterns and persistence of elemental export from upland thermokarst, we sampled hydrologic outflow from 83 thermokarst features in various stages of development across the North Slope of Alaska. We hypothesized that an initial pulse of carbon and nutrients would be followed by a period of elemental retention during feature recovery, and that the duration of these stages would depend on feature morphology. Thermokarst caused substantial increases in dissolved organic carbon and other solute concentrations with a particularly large impact on inorganic nitrogen. Magnitude and duration of thermokarst effects on water chemistry differed by feature type and secondarily by landscape age. Most solutes returned to undisturbed concentrations after feature stabilization, but elevated dissolved carbon, inorganic nitrogen, and sulfate concentrations persisted through stabilization for some feature types, suggesting that aquatic disturbance by thermokarst for these solutes is long-lived. Dissolved methane decreased by 90% for most feature types, potentially due to high concentrations of sulfate and inorganic nitrogen. Spatial patterns of carbon and nutrient export from thermokarst suggest that upland thermokarst may be a dominant linkage transferring carbon and nutrients from terrestrial to aquatic ecosystems as the Arctic warms.

Funder

Office of Polar Programs

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference107 articles.

1. Abbott, B. W. and Jones, J. B.: Upland permafrost collapse stimulates N2O production but effect on growing-season respiration depends on thermokarst morphology, Glob. Change Biol., submitted, 2015.

2. Abbott, B. W., Larouche, J. R., Jones, J. B., Bowden, W. B., and Balser, A. W.: Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost, J. Geophys. Res.-Biogeo., 119, 2049–2063, https://doi.org/10.1002/2014JG002678, 2014.

3. Abbott, B. W., Jones, J. B., Schuur, E. A. G., Chapin III, F. S., Bowden, W. B., Bret-Harte, M. S., Epstein, H. E., Flannigan, M. D., Harms, T. K., Hollingsworth, T. N., Mack, M. C., McGuire, A. D., Natali, S. M., Rocha, A. V., Tank, S. E., Turetsky, M. R., Vonk, J. E., Wickland, K. P., and the Permafrost Carbon Network: Can increased biomass offset carbon release from soils, streams, and wildfire across the permafrost region? An expert assessment, P. Natl. Acad. Sci. USA, submitted, 2015.

4. Amon, R. M. W., Rinehart, A. J., Duan, S., Louchouarn, P., Prokushkin, A., Guggenberger, G., Bauch, D., Stedmon, C., Raymond, P. A., Holmes, R. M., McClelland, J. W., Peterson, B. J., Walker, S. A., and Zhulidov, A. V.: Dissolved organic matter sources in large Arctic rivers, Geochim. Cosmochim. Ac., 94, 217–237, 2012.

5. Balcarczyk, K. L., Jones, J. B., Jaffe, R., and Maie, N.: Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost, Biogeochemistry, 94, 255–270, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3