Assessing the Behavior of Microplastics in Fluvial Systems: Infiltration and Retention Dynamics in Streambed Sediments

Author:

Boos Jan‐Pascal1ORCID,Dichgans Franz2ORCID,Fleckenstein Jan H.23ORCID,Gilfedder Benjamin Silas14ORCID,Frei Sven5ORCID

Affiliation:

1. Department of Hydrology Bayreuth Center of Ecology and Environmental Research (BAYCEER) University of Bayreuth Bayreuth Germany

2. Department of Hydrogeology UFZ – Helmholtz Centre for Environmental Research Leipzig Germany

3. Hydrologic Modeling Unit Bayreuth Center of Ecology and Environmental Research (BAYCEER) University of Bayreuth Bayreuth Germany

4. Limnological Research Station Bayreuth Center of Ecology and Environmental Research (BAYCEER) University of Bayreuth Bayreuth Germany

5. Wageningen University Research Centre Department of Environmental Science Aquatic Ecology and Water Quality Management Group Wageningen The Netherlands

Abstract

AbstractMicroplastics (MPs) have been detected ubiquitously in fluvial systems and advective transfer has been proposed as a potential mechanism for the transport of (sub‐) pore‐scale MPs from surface waters into streambed sediments. However, the influence of particle and sediment properties, as well as the hydrodynamic flow regime, on the infiltration behavior and mobility of MPs in streambed sediments remains unclear. In this study, we conducted a series of flume experiments to investigate the effect of particle size (1–10 μm), sediment type (fine and coarse sand), and flow regime (high/low flow) on particle infiltration dynamics in a rippled streambed. Quantification of particles in the flume compartments (surface flow, streambed interface, and in the streambed) was achieved using continuous fluorescence techniques. Results indicated that the maximum infiltration depth into the streambed decreased with increasing particle size (11, 10, and 7 cm for 1, 3, and 10 μm). The highest particle retardation was observed in the fine sediment experiment, where 22% of the particles were still in the streambed at the end of the experiment. Particle residence times were shortest under high flow conditions, suggesting that periods of increased discharge can effectively flush MPs from streambed sediments. This study provides novel insights into the complex dynamics of MP infiltration and retention in streambed sediments and contributes to a better understanding of MPs fate in fluvial ecosystems. Quantitative data from this study can improve existing modeling frameworks for MPs transport and assist in assessing the exposure risk of MPs ingestion by benthic organisms.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3