Quantifying the Safe Operating Space for Land‐System SDG Achievement via Machine Learning and Scenario Discovery

Author:

Khan Md Shakil1ORCID,Moallemi Enayat A.12ORCID,Nazari Asef3ORCID,Thiruvady Dhananjay3ORCID,Bryan Brett A.1ORCID

Affiliation:

1. School of Life & Environmental Sciences Deakin University VIC Burwood Australia

2. Agriculture and Food CSIRO ACT Black Mountain Australia

3. School of Information Technology Deakin University VIC Geelong Australia

Abstract

AbstractWe developed a machine learning based surrogate model to identify sustainability pathways through rapid scenario generation and defined the safe operating space for achieving them via scenario discovery. We trained a surrogate model to replicate the Land‐Use Trade‐Offs integrated model of the Australian land system. Latin hypercube sampling was used to create many scenarios exploring the impact of uncertainties in key drivers including future socio‐economic development, climate change mitigation, and agricultural productivity at a granular level. Economic and environmental impacts were evaluated against nationally downscaled SDG targets. Scenario discovery revealed new pathways to achieving five SDG targets for 2050 which required crop yield increases above 1.78 times, a carbon price above 100 AU$ tCO2−1, a >9% biodiversity levy on carbon plantings, and carefully regulated land‐use policy. Machine learning based surrogate modeling teamed with scenario discovery revealed the policy and scenario settings required for a more sustainable future for the Australian land sector.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3