Affiliation:
1. School of Life & Environmental Sciences Deakin University VIC Burwood Australia
2. Agriculture and Food CSIRO ACT Black Mountain Australia
3. School of Information Technology Deakin University VIC Geelong Australia
Abstract
AbstractWe developed a machine learning based surrogate model to identify sustainability pathways through rapid scenario generation and defined the safe operating space for achieving them via scenario discovery. We trained a surrogate model to replicate the Land‐Use Trade‐Offs integrated model of the Australian land system. Latin hypercube sampling was used to create many scenarios exploring the impact of uncertainties in key drivers including future socio‐economic development, climate change mitigation, and agricultural productivity at a granular level. Economic and environmental impacts were evaluated against nationally downscaled SDG targets. Scenario discovery revealed new pathways to achieving five SDG targets for 2050 which required crop yield increases above 1.78 times, a carbon price above 100 AU$ tCO2−1, a >9% biodiversity levy on carbon plantings, and carefully regulated land‐use policy. Machine learning based surrogate modeling teamed with scenario discovery revealed the policy and scenario settings required for a more sustainable future for the Australian land sector.
Publisher
American Geophysical Union (AGU)
Subject
Earth and Planetary Sciences (miscellaneous),General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献