Climate Change and Rising CO2 Amplify the Impact of Land Use/Cover Change on Carbon Budget Differentially Across China

Author:

Huang Binbin12ORCID,Lu Fei123ORCID,Sun Binfeng4,Wang Xiaoke12ORCID,Li Xiaoma5,Ouyang Zhiyun12,Yuan Yafei6

Affiliation:

1. State Key Laboratory of Urban and Regional Ecology Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. Beijing‐Tianjin‐Hebei Urban Megaregion National Observation and Research Station for Eco‐Environmental Change Beijing China

4. Institute of Agricultural Engineering Jiangxi Academy of Agricultural Sciences Nanchang China

5. College of Landscape Architecture and Art Design Hunan Agricultural University Changsha China

6. North China Power Engineering Co, Ltd. of China Power Engineering Consulting Group Beijing China

Abstract

AbstractGiven the increasing attention to climate change and rising CO2 (CCRC) in the global carbon cycle, we remain unclear about how China's unprecedented land use/cover change (LUCC) in the carbon budget has been affected by CCRC in recent decades. Here, we combined remotely sensed land use/cover (LUC) datasets and the Biome‐BGCMuSo model to address this issue by setting different scenarios. We found that LUCC led the carbon sink to increase by approximately 104.24 ± 46.52 Tg C without considering CCRC during 1990–2020. Carbon sinks contributed by afforestation (374.97 ± 36.50 Tg C) and grassland planting (15.75 ± 9.11 Tg C) offset other LUC trajectories caused carbon loss (286.47 ± 32.18 Tg C, 87.33% owing to agricultural reclamation). LUCC contributed carbon sinks were amplified by ∼20% under CCRC at the national scale. This rate increased to 106.03% in northeast China but decreased to −26.68% in southern China. CCRC led carbon sink contributed by afforestation amplified by 85.11% in northeastern China but was only 26.35% in southern China. CCRC amplified carbon emissions due to agricultural reclamation by 103.20% in northeastern China and by 25.09% in southern China. Our results demonstrated that ecological restoration projects are efficient in enhancing carbon sinks and mitigating emissions. Divergent amplifying/reducing effect of CCRC across different geographic regions implied the sensitivity of different LUC trajectories to CCRC varied with different climate backgrounds. Land management strategies should be implemented with spatial heterogeneity to amplify afforestation and grassland planting contributed carbon sinks and decrease other LUC trajectories caused carbon loss under the global change environment.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3