Accelerating Large‐Eddy Simulations of Clouds With Tensor Processing Units

Author:

Chammas Sheide1ORCID,Wang Qing1ORCID,Schneider Tapio12ORCID,Ihme Matthias13ORCID,Chen Yi‐fan1ORCID,Anderson John1ORCID

Affiliation:

1. Google LLC Mountain View CA USA

2. California Institute of Technology Pasadena CA USA

3. Stanford University Stanford CA USA

Abstract

AbstractClouds, especially low clouds, are crucial for regulating Earth's energy balance and mediating the response of the climate system to changes in greenhouse gas concentrations. Despite their importance for climate, they remain relatively poorly understood and are inaccurately represented in climate models. A principal reason is that the high computational expense of simulating them with large‐eddy simulations (LES) has inhibited broad and systematic numerical experimentation and the generation of large data sets for training parametrization schemes for climate models. Here we demonstrate LES of low clouds on tensor processing units (TPUs), application‐specific integrated circuits that were originally developed for machine learning applications. We show that TPUs in conjunction with tailored software implementations can be used to simulate computationally challenging stratocumulus clouds in conditions observed during the Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) field study. The TPU‐based LES code successfully reproduces clouds during DYCOMS and opens up the large computational resources available on TPUs to cloud simulations. The code enables unprecedented weak and strong scaling of LES, making it possible, for example, to simulate stratocumulus with 10× speedup over real‐time evolution in domains with a 34.7 km × 53.8 km horizontal cross section. The results open up new avenues for computational experiments and for substantially enlarging the sample of LES available to train parameterizations of low clouds.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3