The New Max Planck Institute Grand Ensemble With CMIP6 Forcing and High‐Frequency Model Output

Author:

Olonscheck Dirk1ORCID,Suarez‐Gutierrez Laura123ORCID,Milinski Sebastian14ORCID,Beobide‐Arsuaga Goratz56ORCID,Baehr Johanna5ORCID,Fröb Friederike78,Ilyina Tatiana1ORCID,Kadow Christopher9ORCID,Krieger Daniel610ORCID,Li Hongmei1ORCID,Marotzke Jochem15ORCID,Plésiat Étienne9,Schupfner Martin9,Wachsmann Fabian9ORCID,Wallberg Lara16,Wieners Karl‐Hermann1ORCID,Brune Sebastian5ORCID

Affiliation:

1. Max Planck Institute for Meteorology Hamburg Germany

2. Institute for Atmospheric and Climate Science ETH Zurich Zurich Switzerland

3. Institut Pierre‐Simon Laplace CNRS Paris France

4. European Centre for Medium‐Range Weather Forecasts Bonn Germany

5. Center for Earth System Research and Sustainability Universität Hamburg Hamburg Germany

6. International Max Planck Research School on Earth System Modelling Hamburg Germany

7. Geophysical Institute University of Bergen Bergen Norway

8. Bjerknes Centre for Climate Research Bergen Norway

9. German Climate Computing Centre (DKRZ) Hamburg Germany

10. Helmholtz‐Zentrum Hereon Geesthacht Germany

Abstract

AbstractSingle‐model initial‐condition large ensembles are powerful tools to quantify the forced response, internal climate variability, and their evolution under global warming. Here, we present the CMIP6 version of the Max Planck Institute Grand Ensemble (MPI‐GE CMIP6) with currently 30 realizations for the historical period and five emission scenarios. The power of MPI‐GE CMIP6 goes beyond its predecessor ensemble MPI‐GE by providing high‐frequency output, the full range of emission scenarios including the highly policy‐relevant low emission scenarios SSP1‐1.9 and SSP1‐2.6, and the opportunity to compare the ensemble to complementary high‐resolution simulations. First, we describe MPI‐GE CMIP6, evaluate it with observations and reanalyzes and compare it to MPI‐GE. Then, we demonstrate with six application examples how to use the power of the ensemble to better quantify and understand present and future climate extremes, to inform about uncertainty in approaching Paris Agreement global warming limits, and to combine large ensembles and artificial intelligence. For instance, MPI‐GE CMIP6 allows us to show that the recently observed Siberian and Pacific North American heatwaves would only avoid reaching 1–2 years return periods in 2071–2100 with low emission scenarios, that recently observed European precipitation extremes are captured only by complementary high‐resolution simulations, and that 3‐hourly output projects a decreasing activity of storms in mid‐latitude oceans. Further, the ensemble is ideal for estimates of probabilities of crossing global warming limits and the irreducible uncertainty introduced by internal variability, and is sufficiently large to be used for infilling surface temperature observations with artificial intelligence.

Funder

Horizon 2020 Framework Programme

HORIZON EUROPE Marie Sklodowska-Curie Actions

Bundesministerium für Bildung und Forschung

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3