Decadal Predictability of Seasonal Temperature Distributions

Author:

Düsterhus André12ORCID,Brune Sebastian3ORCID

Affiliation:

1. National Centre for Climate Research (NCKF) Danish Meteorological Institute Copenhagen Denmark

2. Department of Geography Irish Climate Analysis and Research UnitS (ICARUS) Maynooth University Maynooth Ireland

3. Institute of Oceanography Center for Earth System Research and Sustainability Universität Hamburg Hamburg Germany

Abstract

AbstractDecadal predictions focus regularly on the predictability of single values, like means or extremes. In this study we investigate the prediction skill of the full underlying surface temperature distributions on global and European scales. We investigate initialized hindcast simulations of the Max Planck Institute Earth system model decadal prediction system and compare the distribution of seasonal daily temperatures with estimates of the climatology and uninitialized historical simulations. In the analysis we show that the initialized prediction system has advantages in particular in the North Atlantic area and allow so to make reliable predictions for the whole temperature spectrum for two to 10 years ahead. We also demonstrate that the capability of initialized climate predictions to predict the temperature distribution depends on the season.

Funder

Marine Institute

Publisher

American Geophysical Union (AGU)

Reference31 articles.

1. Verification Data and the Skill of Decadal Predictions

2. Improved Decadal Predictions of North Atlantic Subpolar Gyre SST in CMIP6

3. Preserving the coupled atmosphere–ocean feedback in initializations of decadal climate predictions

4. Assimilation of oceanic observations in a global coupled Earth system model with the SEIK filter

5. Brune S. Pohlmann H. Müller W. A. Nielsen D. M. Hövel L. &Baehr J.(2021).MPI‐ESM‐LR_1.2.01p5 decadal predictions localEnKF: Daily mean values. [Dataset].DOKU at DKRZ. Retrieved fromhttp://hdl.handle.net/hdl:21.14106/f2fdc61b13828ed5284f4e4ab41e63f8a84c6e52

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3