Enhancing Mixing During Groundwater Remediation via Engineered Injection‐Extraction: The Issue of Connectivity

Author:

Bertran O.12ORCID,Fernàndez‐Garcia D.12ORCID,Sole‐Mari G.3ORCID,Rodríguez‐Escales P.12ORCID

Affiliation:

1. Department of Civil and Environmental Engineering (DECA) Universitat Politècnica de Catalunya (UPC) Barcelona Spain

2. Associated Unit: Hydrogeology Group (UPC‐CSIC) Barcelona Spain

3. Géosciences Rennes Université de Rennes Rennes France

Abstract

AbstractIn the context of in situ groundwater remediation, mixing is vital for a successful outcome. A slow mixing rate between the contaminated groundwater and the injected treatment solution can severely weaken the effective degradation rate. Engineered Injection‐Extraction (EIE) has been proposed as a means to accelerate dilution within the porous medium. However, existing studies on the subject have not considered the potential impact of connectivity and preferential flow‐paths. Neglecting connectivity can lead to an overestimation of EIE's capabilities, since the fluid may in reality be carried mainly through a few high‐permeability channels, thus hampering mixing and reaction. Due to the fact that channeling can be found in many actual sites, in this work we aim to evaluate EIE methods in both poorly connected (represented as Multigaussian fields) and well‐connected fields (represented as non‐Multigaussians). The approach is to identify, for each given medium, a stirring protocol—defined by a specific combination of rotation angle and rotation rate—which maximizes mixing. To that end, metrics are proposed in order to (a) quantify both the mixing and the containment of the treatment solution within a given remediation volume, and (b) characterize the particle trajectories to explicitly evaluate if preferential paths are broken. The results obtained from these metrics are quite similar for both types of fields, proving that the enhancing of mixing by means of EIE is effective regardless of the presence of preferential flow paths. This study demonstrates that EIE via rotating dipoles diminishes the remediation outcome uncertainty induced by medium heterogeneity.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dispersion Versus Diffusion in Mixing Fronts;Water Resources Research;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3