Stirring by chaotic advection

Author:

Aref Hassan

Abstract

In the Lagrangian representation, the problem of advection of a passive marker particle by a prescribed flow defines a dynamical system. For two-dimensional incompressible flow this system is Hamiltonian and has just one degree of freedom. For unsteady flow the system is non-autonomous and one must in general expect to observe chaotic particle motion. These ideas are developed and subsequently corroborated through the study of a very simple model which provides an idealization of a stirred tank. In the model the fluid is assumed incompressible and inviscid and its motion wholly two-dimensional. The agitator is modelled as a point vortex, which, together with its image(s) in the bounding contour, provides a source of unsteady potential flow. The motion of a particle in this model device is computed numerically. It is shown that the deciding factor for integrable or chaotic particle motion is the nature of the motion of the agitator. With the agitator held at a fixed position, integrable marker motion ensues, and the model device does not stir very efficiently. If, on the other hand, the agitator is moved in such a way that the potential flow is unsteady, chaotic marker motion can be produced. This leads to efficient stirring. A certain case of the general model, for which the differential equations can be integrated for a finite time to produce an explicitly given, invertible, area-preserving mapping, is used for the calculations. The paper contains discussion of several issues that put this regime of chaotic advection in perspective relative to both the subject of turbulent advection and to recent work on critical points in the advection patterns of steady laminar flows. Extensions of the model, and the notion of chaotic advection, to more realistic flow situations are commented upon.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference39 articles.

1. Moser, J. 1973 Stable and Random Motions in Dynamical Systems .Princeton University Press.

2. Aref, H. & Pomphrey, N. 1980 Integrable and chaotic motions of four vortices.Phys. Lett. A78,297–300.

3. Lichtenberg, A. J. & Lieberman, M. A. 1983 Regular and Stochastic Motion .Springer.

4. Aref, H. 1982b Stirring by chaotic advection.Bull. Am. Phys. Soc. 27,1178 (abstract only).

5. Holmes, P. J. & Marsden, J. E. 1982a Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom.Commun. Math. Phys. 82,523–544.

Cited by 1620 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3