Tracer Velocity Versus Bedload Velocity: Derivation of the Unsteady Virtual Bedload Velocity From Decelerating Tracers

Author:

Klösch M.1ORCID,Pessenlehner S.12ORCID,Gmeiner P.12ORCID,Habersack H.1ORCID

Affiliation:

1. Department of Water, Atmosphere and Environment Institute of Hydraulic Engineering and River Research University of Natural Resources and Life Sciences Vienna Vienna Austria

2. CD‐Laboratory for Sediment Research and Management Vienna Austria

Abstract

AbstractDuring rest periods, bedload tracers can be buried, while transport can move them to locations with different bed shear stresses or a different riverbed composition. This affects the mobility of the tracers compared to that of the bedload at the location where the tracers were seeded and has so far limited the explanatory power of field tracer studies on the virtual bedload velocity. This paper proposes a method to assess both the unsteady virtual tracer velocity and the unsteady virtual bedload velocity from field tracer studies. First, the virtual bedload velocity was conceptualized as the velocity of a relay run and contrasted with the velocity of the decelerating runs of bedload tracers. Then, a regression method for deriving the unsteady virtual velocity of bedload tracers was extended to account for tracer slowdown by including a corresponding function of the distance traveled. Finally, data from 65 bedload tracers in the Upper Drava River with very‐high‐frequency (VHF) transmitters were used for method testing. By linking the measured tracer mobility to the hydraulics and bed surface grain size near the seeding location, it was possible to determine the unsteady bedload velocity function as the unsteady tracer velocity function at a travel distance of zero. The tracer travels exhibited increasing slowdown effects with increasing tracer grain size, probably due to the dominant role of advection effects at the study site. The derivation of the bedload velocity ensures comparability to laboratory results and between tracer studies.

Funder

European Regional Development Fund

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3