The nature of saltation and of ‘bed-load’ transport in water

Author:

Abstract

Owing to observational difficulties the distinction between a ‘suspended’ load of solids transported by a stream and a ‘ bed-load ’ has long remained undefined. Recently, however, certain critical experiments have thrown much light on the nature of bed-load transport. In particular, it has been shown that bed-load transport, by saltation, occurs in the absence of fluid turbulence and must therefore be due to a separate dynamic process from that of transport in suspension by the internal eddy motion of a turbulent fluid. It has been further shown that the forward motion of saltating solids is opposed by a frictional force of the same order as the immersed weight of the solids, the friction coefficient approximating to that given by the angle of slip. The maintenance of steady motion therefore requires a predictable rate of energy dissipation by the transporting fluid. The fluid thrust necessary to maintain the motion is shown to be exerted by virtue of a mean slip velocity which is predictable in the same way as, and approxim ates to, the terminal fall velocity of the solid. The mean thrust, and therefore the transport rate of saltating solids, are therefore predictable in terms of the fluid velocity close to the bed, at a distance from it, within the saltation zone, of a ‘centre of fluid thrust’ analogous to the ‘centre of pressure’. This velocity, which is not directly measurable in water streams, can be got from a knowledge of stream depth and mean flow velocity. Thus a basic energy equation is obtained relating the rate of transporting work done to available fluid transporting power. This is shown to be applicable to the transport both of wind-blown sand, and of water-driven solids of all sizes and larger than that of medium sand. Though the mean flow velocity is itself unpredictable, the total stream power, which is the product of this quantity times the bed shear stress, is readily measurable. But since the mean flow velocity is an increasing function of flow depth, the transport of solids expressed in terms of total stream power must decrease with increasing flow depth/grain size ratio. This considerable variation with flow depth has not been previously recognised. It explains the gross inconsistencies found in the existing experimental data. The theoretical variation is shown to approximate very closely to that found in recent critical experiments in which transport rates were measured at different constant flow depths. The theory, which is largely confirmed by these and other earlier experiments, indicates that suspension by fluid turbulence of mineral solids larger than those of medium sands does not become appreciable until the bed shear stress is increased to a value exceeding 12 times its threshold value for the bed material considered. This range of unsuspended transport decreases rapidly, however, as the grain size is reduced till, at a certain critical size, suspension should occur at the threshold of bed movement.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference11 articles.

1. The movement of desert sand

2. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear

3. The flow of cohesionless grains in fluids. Trans. R;Bagnold R .;Soc. Lond. A,1956

4. Bagnold R . A. 19660 An approach to th e sedim ent tra n sp o rt problem from general physics. U .S. Geol. Survey Profl P ap. 422-1.

5. The shearing and dilatation of dry sand and the 'singing’ mechanism

Cited by 382 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3