Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear

Author:

Abstract

Dispersions of solid spherical grains of diameter D = 0.13cm were sheared in Newtonian fluids of varying viscosity (water and a glycerine-water-alcohol mixture) in the annular space between two concentric drums. The density σ of the grains was balanced against the density ρ of the fluid, giving a condition of no differential forces due to radial acceleration. The volume concentration C of the grains was varied between 62 and 13 %. A substantial radial dispersive pressure was found to be exerted between the grains. This was measured as an increase of static pressure in the inner stationary drum which had a deformable periphery. The torque on the inner drum was also measured. The dispersive pressure P was found to be proportional to a shear stress λ attributable to the presence of the grains. The linear grain concentration λ is defined as the ratio grain diameter/mean free dispersion distance and is related to C by λ = 1 ( C 0 / C ) 1 2 1 where C 0 is the maximum possible static volume concentration. Both the stresses T and P , as dimensionless groups T σ D 2 /λη 2 , and P σ D 2 /λη 2 , were found to bear single-valued empirical relations to a dimensionless shear strain group λ ½ σ D 2 (d U /d y )lη for all the values of λ< 12( C = 57% approx.) where d U /d y is the rate of shearing of the grains over one another, and η the fluid viscosity. This relation gives T α σ ( λ D ) 2 ( dU / dy ) 2 and T λ 1 2 η d U / dy according as d U /d y is large or small, i.e. according to whether grain inertia or fluid viscosity dominate. An alternative semi-empirical relation F = (1+λ)(1+½λ)ηd U /d y was found for the viscous case, when T is the whole shear stress. The ratio T/P was constant at 0·3 approx, in the inertia region, and at 0.75 approx, in the viscous region. The results are applied to a few hitherto unexplained natural phenomena.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 2204 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3