Effect of pH on Spontaneous Imbibition in Calcareous Rocks

Author:

Pratama Muhammad Andiva1,Khan Hasan Javed1ORCID

Affiliation:

1. Department of Petroleum Engineering King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia

Abstract

AbstractReactive transport in porous media exhibits multifaceted interactions that are dependent on the matrix and fluid properties, and which ultimately alter these properties. A set of calcareous rock samples with unique mineralogy and varying petrophysical properties are selected for this study. A capillary rise experiment is performed in each sample, first with deionized water and then with a dilute, pH 2, HCl solution. Pre‐ and post‐acid petrophysical properties such as porosity, permeability, pore size distribution, and contact angle are measured for each sample along with the capillary rise profile. The latter is tracked by applying image analysis on video recording. The rock mineralogy significantly affects the acidic fluid intrusion into the rock samples. Calcite dissolution is the main reaction that results in the opening of the pore space. This is more prominent in all the carbonate samples where a higher proportion of calcite minerals is present. A higher capillary rise is consistently observed compared to the neutral fluid along with an increase in porosity and the mean pore size. The contact angle also undergoes changes making the carbonate matrix from oil‐wet to neutral‐wet. Coupling capillary interactions with fluid reactivity is often neglected in fluid transport phenomena. This study offers new insights into the relative importance of reactivity at the timescale of spontaneous imbibition. This is important in understanding dissolution and precipitation processes during capillary flow.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3