Process‐Based Atmosphere‐Hydrology‐Malaria Modeling: Performance for Spatio‐Temporal Malaria Transmission Dynamics in Sub‐Saharan Africa

Author:

Dieng Mame Diarra Bousso1ORCID,Tompkins Adrian M.2ORCID,Arnault Joël13ORCID,Sié Ali4ORCID,Fersch Benjamin1ORCID,Laux Patrick13ORCID,Schwarz Maximilian5ORCID,Zabré Pascal4,Munga Stephen6,Khagayi Sammy6,Diouf Ibrahima7ORCID,Kunstmann Harald138ORCID

Affiliation:

1. Institute of Meteorology and Climate Research (IMK‐IFU) Campus Alpin Karlsruhe Institute of Technology (KIT) Garmisch‐Partenkirchen Germany

2. International Centre for Theoretical Physics (ICTP) Trieste Italy

3. Institute of Geography University of Augsburg Augsburg Germany

4. Centre de Recherche en Santé de Nouna (CRSN) Nouna Burkina Faso

5. Remote Sensing Solutions GmbH (RSS) Munich Germany

6. Kenya Medical Research Institute (KEMRI) Kisumu Kenya

7. Laboratoire de Physique de l'atmosphère et de l'océan Siméon Fongang (LPAOSF‐ESP) Dakar Senegal

8. Center for Climate Resilience, University of Augsburg Augsburg Germany

Abstract

AbstractWith the goal of eradication by 2030, Malaria poses a significant health threat, profoundly influenced by meteorological and hydrological conditions. In support of malaria vector control efforts, we present a high‐resolution, coupled physically‐based modeling approach integrating WRF‐Hydro and VECTRI. This model approach accurately captures topographic details at the scale of larvae habitats in the Nouna Health and Demographic Surveillance Systems in Sub‐Saharan Africa. Our study demonstrates the proficiency of the high‐resolution hydrometeorological model, WRF‐Hydro, in replicating observed climate characteristics. Comparisons with in‐situ local weather data reveal root mean square errors between 0.6 and 0.87 mm/day for rainfall and correlations ranging from 0.79 to 0.87 for temperatures. Additionally, WRF‐Hydro's surface hydrology reproduces the seasonal and intraseasonal variability of the ponded water fraction with 96% accuracy, validated against Sentinel‐1 data at a 100‐m resolution. The VECTRI model demonstrates sensitivity to surface hydrology representation, particularly when comparing conceptual and detailed physical process models, for variables such as larvae density, mosquito abundance, and EIR. The model's ability to replicate the seasonality of malaria transmission aligns well with available cohort malaria data suggesting its potential for predicting the impacts of climate change on mosquito abundance and transmission intensity in endemic tropical and subtropical zones. This integrated approach opens avenues for enhanced understanding and proactive management of malaria.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3