Exploring the Complex Effects of Wildfire on Stream Water Chemistry: Insights From Concentration‐Discharge Relationships

Author:

Richardson C.1ORCID,Montalvo M.12ORCID,Wagner S.3ORCID,Barton R.3ORCID,Paytan A.1ORCID,Redmond M.4,Zimmer M.15ORCID

Affiliation:

1. Department of Earth and Planetary Sciences University of California at Santa Cruz Santa Cruz CA USA

2. Department of Geography Simon Fraser University Burnaby BC Canada

3. Department of Earth and Environmental Sciences Rensselaer Polytechnic Institute Troy NY USA

4. Department of Climate and Space Sciences and Engineering University of Michigan at Ann Arbor Ann Arbor MI USA

5. Now at US Geological Survey Upper Midwest Water Science Center Madison WI USA

Abstract

AbstractWildfires are a worldwide disturbance with unclear implications for stream water quality. We examined stream water chemistry responses immediately (<1 month) following a wildfire by measuring over 40 constituents in four gauged coastal watersheds that burned at low to moderate severity. Three of the four watersheds also had pre‐fire concentration‐discharge data for 14 constituents: suspended sediment (SSfine), dissolved organic and inorganic carbon (DOC, DIC), specific UV absorbance (SUVA), major ions (Ca2+, K+, Mg2+, Na+, Cl, , , F), and select trace elements (total dissolved Mn, Fe). In all watersheds, post‐fire stream water concentrations of SSfine, DOC, Ca2+, Cl, and changed when compared to pre‐fire data. Post‐fire changes in , K+, Na+, Mg2+, DIC, SUVA, and total dissolved Fe were also found for at least two of the three streams. For constituents with detectable responses to wildfire, post‐fire changes in the slopes of concentration‐discharge relationships commonly resulted in stronger enrichment trends or weaker dilution trends, suggesting that new contributing sources were surficial or near the surface. However, a few geogenic solutes, Ca2+, Mg2+, and DIC, displayed stronger dilution trends at nearly all sites post‐fire. Moreover, fire‐induced constituent concentration changes were highly discharge and site‐dependent. These similarities and differences in across‐site stream water chemistry responses to wildfire emphasize the need for a deeper understanding of landscape‐scale changes to solute sources and pathways. Our findings also highlight the importance of being explicit about reference points for both stream discharge and pre‐fire stream water chemistry in post‐fire assessment of concentration changes.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3