A review of the effects of forest fire on soil properties

Author:

Agbeshie Alex Amerh,Abugre Simon,Atta-Darkwa Thomas,Awuah Richard

Abstract

AbstractForest fires are key ecosystem modifiers affecting the biological, chemical, and physical attributes of forest soils. The extent of soil disturbance by fire is largely dependent on fire intensity, duration and recurrence, fuel load, and soil characteristics. The impact on soil properties is intricate, yielding different results based on these factors. This paper reviews research investigating the effects of wildfire and prescribed fire on the biological and physico-chemical attributes of forest soils and provides a summary of current knowledge associated with the benefits and disadvantages of such fires. Low-intensity fires with ash deposition on soil surfaces cause changes in soil chemistry, including increase in available nutrients and pH. High intensity fires are noted for the complete combustion of organic matter and result in severe negative impacts on forest soils. High intensity fires result in nutrient volatilization, the break down in soil aggregate stability, an increase soil bulk density, an increase in the hydrophobicity of soil particles leading to decreased water infiltration with increased erosion and destroy soil biota. High soil heating (> 120 °C) from high-intensity forest fires is detrimental to the soil ecosystem, especially its physical and biological properties. In this regard, the use of prescribed burning as a management tool to reduce the fuel load is highly recommended due to its low intensity and limited soil heating. Furthermore, the use of prescribed fires to manage fuel loads is critically needed in the light of current global warming as it will help prevent increased wildfire incidences. This review provides information on the impact of forest fires on soil properties, a key feature in the maintenance of healthy ecosystems. In addition, the review should prompt comprehensive soil and forest management regimes to limit soil disturbance and restore fire-disturbed soil ecosystems.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3