Affiliation:
1. Department of Geology Colby College Waterville ME USA
2. Lamont‐Doherty Earth Observatory of Columbia University Palisades NY USA
3. Department of Earth and Environmental Sciences Columbia University New York NY USA
Abstract
AbstractThe Southern Hemisphere westerly winds (SWW) play a critical role in global climate, yet their behavior on decadal to centennial timescales, and the mechanisms driving these changes during the preindustrial era, remain poorly understood. We present a decadally resolved record of dust compositions using strontium and neodymium isotope ratios in mineral dust from the Siple Dome ice core, Antarctica, to explore the potential that abrupt changes in SWW behavior occurred over the past millennium. The record spans portions of the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) intervals as defined in the Northern Hemisphere. We find evidence of an abrupt strengthening of atmospheric circulation during the MCA at ∼1125 CE (825 BP) that persisted for about 60 yr, indicating increased influence of Patagonia‐sourced dust. This occurs during an extended positive phase of Southern Annular Mode (SAM+)‐like conditions, characterized by high SWW velocities and a southerly shift of the main wind belt toward ∼60°S, suggesting that rapid changes in SWW strength could occur under the present SAM+ pattern. A second 20 yr long shift in dust compositions during the LIA at ∼1748 CE (200 BP) is coincident with higher dust delivery to Siple Dome, and may indicate increased dust emissions related to glacier activity in Patagonia. The new Siple Dome ice core data set demonstrates that Sr‐Nd isotopes can be used to trace shifts in atmospheric circulation on decadal timescales.
Publisher
American Geophysical Union (AGU)
Subject
Paleontology,Atmospheric Science,Oceanography
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献