Affiliation:
1. School of Geography and Ocean Science Nanjing University Nanjing China
2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology Nanjing University Nanjing China
3. Frontiers Science Center for Critical Earth Material Cycling Nanjing University Nanjing China
4. Department of Land Surveying and Geo‐Informatics and Research Institute for Land and Space The Hong Kong Polytechnic University Kowloong China
Abstract
AbstractDroughts are one of the most frequent and destructive natural disasters worldwide. In the past decades, drought events in China are frequent and caused severe socio‐economic losses. To better predict and manage droughts, the spatiotemporal characteristics of the three types of droughts and propagation time (PT) from meteorological to agricultural and hydrological droughts in China during 1982–2014 were analyzed based on drought indices, while the causes of drought propagation were discussed. The results showed that meteorological droughts exhibited an insignificant trend. Agricultural droughts mainly aggravated in the northeastern and central regions. And the hydrological droughts were long‐lasting and exacerbated in most areas. The propagation speed from meteorological to agricultural and hydrological droughts was extremely rapid (1–2 months) in southeast China, and the relationships among droughts were close (correlation coefficient/R > 0.6). The propagation from meteorological to hydrological droughts was slower (6–8 months) in central China. In northwest China, the association between meteorological and hydrological droughts was weak (R < 0.4). Climatic conditions (especially temperature) played a dominant role in the propagation from meteorological to agricultural and hydrological droughts, explaining 63.3% and 52.6% of the variations in the PT, respectively. Urbanization, agricultural activities, elevation, and vegetation contributed to the propagation from meteorological to agricultural droughts. Reservoirs, agricultural activities, and vegetation also affected the propagation from meteorological to hydrological droughts by regulating hydrological processes. These findings are of vital significance to the prediction, warning, and management of different droughts.
Funder
National Key Research and Development Program of China
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献