Precipitation exacerbates spatial heterogeneity in the propagation time of meteorological drought to soil drought with increasing soil depth

Author:

Hu ChenORCID,Xia Jun,She Dunxian,Wang Gangsheng,Zhang Liping,Jing Zhaoxia,Hong Si,Song Zhihong

Abstract

Abstract The propagation of meteorological droughts to soil droughts poses a substantial threat to water resources, agricultural production, and social systems. Understanding drought propagation process is crucial for early warning and mitigation, but mechanisms of the propagation from meteorological drought to soil drought, particularly at varying soil depths, remain insufficiently understood. Here, we employ the maximum correlation coefficient method and the random forest (RF) model to investigate the spatiotemporal patterns and drivers of propagation time (PT) from meteorological drought to soil drought at four different depths across China from 1980 to 2018. Our findings reveal consistently higher PT in northern China and lower PT in southern China across varying soil depths, with more pronounced spatial heterogeneity with increasing soil depth. Furthermore, we identify temperature and precipitation as determinants of spatial patterns of PT in surface and deeper soil layers, respectively. Additionally, precipitation emerges as the dominant factor influencing changes in PT between different soil layers. Our study highlights a discernible shift in PT drivers from temperature to precipitation as soil depth increases and the significant impact of precipitation on exacerbating spatial heterogeneity in PT. This study contributes to an enhanced comprehension of the propagation process from meteorological drought to soil drought at different depths, which can aid in establishing practical drought mitigation measures and early warning systems.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3