Sources of Southern Hemisphere Marine Aerosols: Insights From Carbonaceous Fraction Concentration and Stable Carbon Isotope Analysis

Author:

Gu Weihua1,Xie Zhouqing12ORCID,Jiang Bei1ORCID,Yue Fange1,Yu Xiawei1,Chen Afeng1

Affiliation:

1. Anhui Key Laboratory of Polar Environment and Global Change Department of Environmental Science and Engineering University of Science and Technology of China Hefei China

2. State Key Laboratory of Fire Science University of Science and Technology of China Hefei China

Abstract

AbstractMarine carbonaceous aerosols, originating from marine and continental sources, are significant global aerosol components. The understanding of marine carbonaceous aerosols is currently limited, especially in the Southern Hemisphere. Furthermore, there is an ongoing debate regarding the contributions of marine fresh and ancient carbon to marine aerosols. To address these gaps, we conducted an extensive investigation utilizing a long‐term data set of aerosol samples collected during six Antarctic cruises (28°N–78°S) from 2013 to 2020. Our analysis revealed an average organic carbon (OC) concentration of 1.29 ± 1.15 μg/m3 and an element carbon (EC) concentration of 0.13 ± 0.18 μg/m3 in the samples. These concentrations varied within a range spanning from background marine samples to those impacted by substantial continental transport. Fossil fuel combustion remained the primary source of continental influence in the marine environment, as evidenced by the OC/EC ratio. The δ13CTC value for all samples range from −22.3‰ to −28.4‰, with a mean value of −26.3 ‰. Using a three‐endmember isotopic source model, we find that continental carbonaceous aerosols make substantial contributions in the Eastern Indian Ocean (81 ± 4%), while their prevalence is lower in the Southern Ocean (SO) (44 ± 20%). In contrast to mid‐latitudes, primary marine aerosol of the SO exhibits a significantly higher contribution from the fresh carbon pool (52 ± 19%). Furthermore, our study suggests that SO sea ice may play a potential role in driving emissions from the fresh carbon pool. These findings contribute to a comprehensive understanding of the effects of carbonaceous aerosols on climate change and the ocean‐atmosphere carbon cycle.

Funder

National Natural Science Foundation of China

Ministry of Natural Resources of the People's Republic of China

Chinese Arctic and Antarctic Administration

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3