Sulfuric Acid Nucleation Potential Model Applied to Complex Reacting Systems in the Atmosphere

Author:

Johnson J. S.12ORCID,Jen C. N.12ORCID

Affiliation:

1. Department of Chemical Engineering Carnegie Mellon University Pittsburgh PA USA

2. Center for Atmospheric Particle Studies Carnegie Mellon University Pittsburgh PA USA

Abstract

AbstractAtmospheric aerosol particles impact Earth's radiation balance by acting as seeds for cloud droplet formation. Over half of global cloud seed particles are formed by nucleation, a process where gas‐phase compounds react to form stable particles. Reactions of sulfuric acid (SA) with a wide variety of atmospheric compounds have been previously shown to drive nucleation in the lower troposphere. However, global climate models poorly predict particle nucleation rates since current nucleation models do not describe nucleation for systems containing tens to hundreds of precursor compounds. The nucleation potential model (NPM) was recently developed to model SA nucleation of complex mixtures by measuring an effective base concentration using a 1‐nm condensation particle counter. This technique for estimating particle nucleation rates can be deployed at a much higher spatial and temporal resolution than current methods which require detailed knowledge of all nucleation reactions and measurements, typically using a mass spectrometer, of all nucleation precursor gases. This work expands NPM by showing that this model can capture enhancement and suppression of SA nucleation rates within a complex mixture of organic and inorganic acids, ambient air, and across a range of atmospherically relevant relative humidities. In addition, an expression for calculating atmospheric nucleation rates was also derived from the NPM. Ultimately, NPM provides a simple way to measure and model the extent compounds in a complex mixture enhance SA nucleation rates using a condensation particle counter.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3